一、简介
typing 是 Python 标准库中的一个模块,用于支持类型提示(Type Hints)。类型提示是一种在代码中指定变量、函数参数和返回值的类型的方法,它可以提供代码的可读性、可维护性和工具支持。
二、常用类型及示例
Any:表示任意类型。
typing import Any1 2 3 4 5 6
| test:Any = 2
def process_data(data: Any) -> None: # 对任意类型的数据进行处理 pass
|
List:表示列表类型。
1 2 3 4 5 6 7
| from typing import List
test: List[int] = [2]
def process_list(items: List[int]) -> None: # 处理整数列表 pass
|
Tuple:表示元组类型。
1 2 3 4 5 6 7
| from typing import Tuple
test:Tuple[int] = (2,)
def process_tuple(data: Tuple[str, int]) -> None: # 处理包含字符串和整数的元组 pass
|
Dict:表示字典类型。
1 2 3 4 5 6 7
| from typing import Dict
test:Dict[str,int] = {"key":1}
def process_dict(data: Dict[str, int]) -> None: # 处理键为字符串,值为整数的字典 pass
|
Set:表示集合类型。
1 2 3 4 5 6 7
| from typing import Set
test: Set[int] = {2,3}
def process_set(data: Set[str]) -> None: # 处理字符串集合 pass
|
Union:表示多个可能的类型。
1 2 3 4 5 6 7
| from typing import Union
test:Union[int,str] = 2
def process_data(data: Union[int, float]) -> None: # 处理整数或浮点数 pass
|
Optional:表示可选类型,即可以是指定类型或者 None。
1 2 3 4 5 6 7
| from typing import Optional
test:Optional[int] = None
def process_data(data: Optional[str]) -> None: # 处理可选的字符串,可以为 None pass
|
Callable:表示可调用对象的类型。
1 2 3 4 5 6 7 8 9 10 11 12
| from typing import Callable
def test(nu1: int, nu2: int) -> int: print('test') return nu1+nu2
def process_function(func: Callable[[int, int], int]) -> None: # 处理接受两个整数参数并返回整数的函数 print(func(2,2))
process_function(test)
|
Iterator:表示迭代器类型。
1 2 3 4 5 6 7
| from typing import Iterator
test:Iterator[int] = iter([2])
def process_iterator(data: Iterator[int]) -> None: # 处理整数迭代器 pass
|
Generator:表示生成器类型。
1 2 3 4 5 6 7
| from typing import Generator
def generate_numbers() -> Generator[int, None, None]: yield 1 yield 2
test: Generator[int, None, None] = generate_numbers()
|
Iterable:表示可迭代对象的类型。
1 2 3 4 5 6 7 8 9
| from typing import Iterable
test:Iterable[str] = ["apple", "banana", "cherry"]
tes1:Iterable[str] = ("apple", "banana", "cherry")
def process_iterable(data: Iterable[str]) -> None: # 处理可迭代的字符串对象 pass
|
Mapping:表示映射类型。
1 2 3 4 5 6 7
| from typing import Mapping
test:Mapping[str,int] = {"apple": 1, "banana": 2, "cherry": 3}
def process_mapping(data: Mapping[str, int]) -> None: # 处理键为字符串,值为整数的映射对象 pass
|
Sequence:表示序列类型。
1 2 3 4 5 6 7
| from typing import Sequence
test: Sequence[int] = [1, 2, 3, 4, 5]
def process_sequence(data: Sequence[int]) -> None: # 处理整数序列 pass
|
AnyStr:表示任意字符串类型。
1 2 3
| from typing import AnyStr
str:AnyStr = '213'
|
NoReturn:表示函数没有返回值。
1 2 3 4 5 6
| from typing import NoReturn
def my_func() -> NoReturn: print("This function does not return anything")
my_func()
|
FrozenSet: 表示不可变的集合类型。类似于 Set,但不能进行修改。
1 2 3 4 5 6 7 8 9
| from typing import FrozenSet
def process_data(data: FrozenSet[str]) -> None: for item in data: print(item)
test: FrozenSet[str] = frozenset(["apple", "banana", "orange"])
process_data(test)
|
Literal: 表示字面值类型。用于指定变量的取值范围,只能是指定的字面值之一
1 2 3 4 5 6 7 8
| from typing import Literal
def process_color(color: Literal["red", "green", "blue"]) -> None: print("Selected color:", color)
process_color("red") process_color("green") process_color("blue")
|
AsyncGenerator: 表示异步生成器类型。类似于 Generator,但用于异步上下文中生成值的类型
1 2 3 4 5 6 7 8 9 10 11 12 13
| from typing import AsyncGenerator import asyncio
async def generate_data() -> AsyncGenerator[int, str]: yield 1 yield 2 yield 3
async def process_data() -> None: async for num in generate_data(): print("Received:", num)
asyncio.run(process_data())
|
ContextManager: 表示上下文管理器类型。用于定义支持 with 语句的对象的类型
1 2 3 4 5 6 7 8 9 10 11 12 13 14
| from typing import ContextManager
class MyContextManager: def __enter__(self): print("Entering context")
def __exit__(self, exc_type, exc_value, traceback): print("Exiting context")
def process_data(manager: ContextManager) -> None: with manager: print("Processing data")
process_data(MyContextManager())
|
AsyncIterator: 表示异步迭代器类型。类似于 Iterator,但用于异步上下文中进行迭代的类型
1 2 3 4 5 6 7 8 9 10 11 12 13
| from typing import AsyncIterator import asyncio
async def async_range(n: int) -> AsyncIterator[int]: for i in range(n): yield i await asyncio.sleep(1)
async def process_data() -> None: async for num in async_range(5): print("Received:", num)
asyncio.run(process_data())
|
Annotated: 用于添加类型注解的装饰器。可以在类型提示中添加额外的元数据信息
1 2 3 4 5 6
| from typing import Annotated
def process_data(data: Annotated[str, "user input"]) -> None: print("Received data:", data)
process_data("Hello")
|
AbstractSet: 表示抽象集合类型。是 Set 的基类,用于指定集合的抽象接口。通常用作父类或类型注解
1 2 3 4 5 6 7 8
| from typing import AbstractSet
def process_data(data: AbstractSet[str]) -> None: for item in data: print(item)
my_set: AbstractSet[str] = {"apple", "banana", "orange"} process_data(my_set)
|
Awaitable: 表示可等待对象的类型。用于指定可以使用 await 关键字等待的对象的类型。
1 2 3 4 5 6 7 8 9 10 11 12
| from typing import Awaitable import asyncio
async def async_task() -> int: await asyncio.sleep(1) return 42
async def process_task(task: Awaitable[int]) -> None: result = await task print("Task result:", result)
asyncio.run(process_task(async_task()))
|
AsyncIterable: 表示异步可迭代对象的类型。类似于 Iterable,但用于异步上下文中进行迭代的类型。
1 2 3 4 5 6 7 8 9 10 11 12 13
| from typing import AsyncIterable import asyncio
async def async_range(n: int) -> AsyncIterable[int]: for i in range(n): yield i await asyncio.sleep(1)
async def process_data() -> None: async for num in async_range(5): print("Received:", num)
asyncio.run(process_data())
|
AwaitableGenerator: 表示可等待生成器类型。结合了 Generator 和 Awaitable,用于异步上下文中生成值并可使用 await 等待的类型。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| from typing import AwaitableGenerator import asyncio
async def async_generator() -> AwaitableGenerator[int, str, int]: yield 1 await asyncio.sleep(1) yield 2 await asyncio.sleep(1) yield 3
async def process_generator() -> None: async for num in async_generator(): print("Received:", num)
asyncio.run(process_generator())
|
AsyncContextManager: 表示异步上下文管理器类型。类似于 ContextManager,但用于异步上下文中支持 async with 语句的对象的类型
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| from typing import AsyncContextManager import asyncio
class MyAsyncContextManager: async def __aenter__(self): print("Entering async context")
async def __aexit__(self, exc_type, exc_value, traceback): print("Exiting async context")
async def process_data(manager: AsyncContextManager) -> None: async with manager: print("Processing data")
asyncio.run(process_data(MyAsyncContextManager()))
|
MutableMapping: 可变的键值对映射类型,它是 Mapping 的子类
1 2 3 4 5 6 7 8
| from typing import MutableMapping
def process_data(data: MutableMapping[str, int]) -> None: data["count"] = 10
my_dict: MutableMapping[str, int] = {"name": "John", "age": 30} process_data(my_dict) print(my_dict)
|
MutableSet: 可变的集合类型,它是 Set 的子类
1 2 3 4 5 6 7 8
| from typing import MutableSet
def process_data(data: MutableSet[int]) -> None: data.add(4)
my_set: MutableSet[int] = {1, 2, 3} process_data(my_set) print(my_set)
|
MappingView: 映射视图类型,它提供了对映射对象的只读访问
1 2 3 4 5 6 7 8
| from typing import MappingView
def process_data(data: MappingView[str, int]) -> None: for key, value in data.items(): print(key, value)
my_dict = {"name": "John", "age": 30} process_data(my_dict.items())
|
Match: 正则表达式匹配对象类型,用于表示匹配的结果
1 2 3 4 5 6 7 8 9 10 11
| from typing import Match import re
def process_data(pattern: str, text: str) -> None: match: Match = re.search(pattern, text) if match: print("Match found:", match.group()) else: print("No match found")
process_data(r"\d+", "abc123def")
|
MutableSequence: 可变的序列类型,它是 Sequence 的子类
`
from typing import MutableSequence
def process_data(data: MutableSequence[int]) -> None:
data.append(4)
my_list: MutableSequence[int] = [1, 2, 3]
process_data(my_list)
print(my_list)
···